Chủ Nhật, 26 tháng 7, 2009

Nhị thức Newton và ứng dụng

Chuyên đề: Nhị thức Newton và ứng dụng (một độc giả của MATHVN gửi)
Tác giả: NGUYỄN VĂN NĂM, THPT Lê Hông Phong ( Đồng Nai) – LÊ HOÀNG NAM, THPT Lê Quý Đôn (Đà Nẵng)
Link download (PDF, 716 KB, MediaFire link): DOWNLOAD

Thứ Sáu, 17 tháng 7, 2009

Luyện thi vào Đại học FPT 2009

Kỳ thi tuyển sinh của Trường Đại học FPT sẽ được tổ chức tại ba khu vực là Hà Nội, Đà Nẵng và TPHCM. Nội dung thi bao gồm: trắc nghiệm toán và tư duy logic (tiếng Việt) trong 120 phút, viết luận (tiếng Việt) trong 60 phút.


Đối tượng tuyển sinh là tất cả các học sinh đã tốt nghiệp THPT từ năm 2009 trở về trước.

Thí sinh muốn dự thi cần nộp trực tiếp hoặc gửi qua bưu điện hồ sơ theo quy định và mẫu của Trường về các văn phòng tư vấn tuyển sinh tại Hà Nội, Đà Nẵng và TP. Hồ Chí Minh. Thời hạn nộp hồ sơ và đăng ký dự thi trực tiếp vào Trường Đại học FPT là trước 17h30 ngày6/8/2009. Hồ sơ gửi qua bưu điện được tính theo dấu chuyển phát của bưu điện trước 17h30 ngày 31/7/2009.

Năm nay, ngoài chương trình “Tín dụng ưu đãi”, Trường Đại học FPT còn chính thức áp dụng chương trình tài chính sinh viên “Cùng bạn đầu tư”. Nhà trường sẽ dành quỹ đầu tư trị giá 10 tỷ VNĐ để đầu tư học phí cùng với các sinh viên. Theo đó, sinh viên có học lực khá giỏi và có hoàn cảnh gia đình khó khăn sẽ được nhà trường đầu tư từ 50 – 90% học phí, trả dần sau khi tốt nghiệp với mức tối đa 4,5% thu nhập.
Trước đó, kì thi sơ tuyển đợt 1 (tháng 4/2009) của Trường Đại học FPT đã thu hút hơn 7,000 thí sinh đến từ 63 tỉnh thành trên toàn quốc. Với mức điểm chuẩn 58/105 điểm, đã có 2,713 thí sinh vượt qua kỳ thi tuyển của trường. Trong đó có 403 thí sinh đủ điểm phỏng vấn tham gia chương trình ưu đãi tín dụng và “Cùng bạn đầu tư”, 136 thí sinh xuất sắc được xét cấp các suất học bổng toàn phần và bán phần trong suốt 4 năm học tại trường.
Bên cạnh các thí sinh đạt điểm cao trong kỳ thi sơ tuyển của trường được xét cấp học bổng, Trường Đại học FPT cũng ưu tiên xét học bổng cho những sinh viên là học sinh giỏi, có thành tích đặc biệt cấp quốc gia hoặc đạt từ 28 điểm trở lên trong kỳ thi đại học tháng 07/2009 do Bộ GD&ĐT tổ chức.

Năm ngoái, tôi có viết bài giới thiệu về cách thức làm bài và đề luyện thi vào Đại học FPT. Tuy nhiên các link ở đó không còn download được nữa. Vì vậy tôi tải lên mediafire để các bạn download dễ dàng hơn:

- Đề thi mẫu và đề thi đáp án chính thức các năm trước: DOWNLOAD
- Đề luyện thi vào Đại học FPT: DOWNLOAD
- Hướng dẫn làm bài: DOWNLOAD

Thứ Năm, 16 tháng 7, 2009

Cao Đẳng 2009: Đề thi, đáp án chính thức môn Toán các khối A, B, D

Kì thi Cao Đẳng 2009 diễn ra vào các ngày 15-16/7/2009. Dưới đây là đề thi và đáp án chính thức môn Toán các khối A, B, D (cả 3 khối làm cùng 1 đề Toán)
Download ở đây: DOWNLOAD

Xem thêm: Đề thi, đáp án Cao Đẳng 2008 các khối A, B, D.

Thứ Ba, 14 tháng 7, 2009

Một số điều nên và không nên trong giảng dạy Toán - Phần 3

Bài viết của GS. Nguyễn Tiến Zũng, MATHVN xin giới thiệu với bạn đọc. Đại từ tôi trong này các bạn phải hiểu đó là thầy Zũng.
Trong loạt bài này, tôi sẽ viết dần một số quan điểm của tôi về những điều nên và không nên trong giảng dạy. Những quan điểm này được rút ra từ kinh nghiệm bản thân, việc nghiên cứu các liệu về giáo dục, sự trao đổi với đồng nghiệp và sinh viên, và những suy nghĩ để làm sao dạy học tốt hơn. Tất nhiên có những quan điểm của tôi có thể còn phiến diện. Xin mời mọi người trao đổi, viết lên những quan điểm và kinh nghiệm của mình.
>> Một số điều nên và không nên trong giảng dạy Toán - Phần 1
>> Một số điều nên và không nên trong giảng dạy Toán - Phần 2

VII.
Nên: Dạy học nghiêm túc, tôn trọng học sinh

Không nên: Dạy qua quít, coi thường học sinh

Điều trên gần như là hiển nhiên. Nhưng ngay trường tôi ở Pháp có những giáo sư dạy học qua quít, nói lảm nhảm học sinh không hiểu, bị học sinh than phiền rất nhiều, ai mà dạy học cùng ê-kíp với họ thì khổ cực lây. Người nào mà không thích hoặc không hợp với dạy học, thì nên chuyển việc. Nhưng đã nhận việc có cả phần dạy học (như là công việc giáo sư bên Pháp, gồm cả nghiên cứu và giảng dạy) thì phải làm việc đó cho nghiêm túc. Dù có “tài giỏi” đến đâu, cũng không nên tự đề cao mình quá mà coi thường học sinh. Công việc đào tạo cũng quan trọng đối với xã hội không kém gì công việc nghiên cứu.

Có một số bạn trẻ, bản thân chưa có đóng góp gì quan trọng, nhưng đã vội chê bai những người thầy của mình, là những người có những hạn chế về trình độ và kết quả nghiên cứu (do điều kiện, hoàn cảnh) nhưng có nhiều cống hiến trong đào tạo, như thế không nên.

Nên: Đối thoại với học sinh, khuyến khích học sinh đặt câu hỏi

Không nên: Tạo cho học sinh thói quen học thụ động kiểu thầy đọc trò chép

Qua thảo luận, hỏi đáp mới biết học sinh cần những gì, vướng mắc những gì, bài giảng như thế đã ổn chưa, … Khi học sinh đặt câu hỏi tức là có suy nghĩ và não đang ở trạng thại muốn “hút” thông tin. Học sinh nhiều khi muốn hỏi nhưng ngại, nếu được khuyến khích thì sẽ hỏi.

Nên: Cho học sinh thấy rằng họ có thể thành công nếu có quyết tâm

Không nên: Nhạo báng học sinh kém

Tôi từng chứng kiến giáo sư sỉ nhục học sinh, ví dụ như viết lên bài thi của học sinh những câu kiểu “thứ mày đi học làm gì cho tốn tiền” hoặc “đây là phần tử nguy hiểm cho xã hội”. Như người ta thường nói “người phụ nữ được khen đẹp thì sẽ đẹp lên, bị chê xấu thì sẽ xấu đi”. Học sinh bị đối xử tồi tệ, coi như “đồ bỏ đi”, thì sẽ bị “blocked”: khi việc học trở thành “địa ngục” thì sẽ bị ức chế không học được nữa. Nhưng nếu được đối xử tử tế, cảm thấy được tôn trọng cảm thông, thì họ sẽ cố gắng, dễ thành công hơn. Nếu họ có “rớt”, thì họ vẫn còn nhiều cơ hội khác để thành công, miễn sao giữ được niềm tin và ý chí. Học sinh học kém, nhiều khi không phải là do không muốn học hoặc không đủ thông minh để học, mà là do có những khó khăn nào đó, nếu được giải tỏa thì sẽ học được. Trẻ em sinh ra thiếu hiểu biết chứ không ngu ngốc. Nếu khi lớn lên trở thành người ngu ngốc, không biết suy nghĩ, thì là do hoàn cảnh môi trường và lỗi của hệ thống giáo dục. Người “thầy” thực sự phải giúp học sinh tìm lại được sự thông minh của mình, chứ không làm cho họ “đần độn” đi.

Nên: Cho học sinh những lời khuyên chân thành nhất, hướng cho họ làm những cái mà giảng viên thấy sẽ có lợi nhất cho họ, đồng thời cho họ tự do lựa chọn những gì họ thích.

Không nên: Biến học sinh thành “tài sản” của mình, bắt họ phải làm theo cái mình thích.

Các bậc cha mẹ cũng không nên bắt con cái phải đi theo những sở thích của cha mẹ, mà hãy để cho chúng lựa chọn cái chúng thích.

VIII.
Nên: Hướng tới chất lượng

Không nên: Chạy theo số lượng và hình thức

(Ở phần này tôi viết về triết lý giáo dục, hay mở rộng ra là các hoạt động nói chung, chứ không riêng cho giảng dạy toán)

Từ khi tôi là sinh viên, có được các anh chị học trên “truyền” cho điều này: Ai mà viết đến 10 bài báo khoa học, mà vẫn không được mấy người khác trích dẫn, thì coi như là thất bại trong khoa học. Điều “đáng sợ” không phải là không viết được bài báo khoa học để đăng, mà là viết nhiều bài “rởm rít”, tốn giấy mực. Tất nhiên, sinh viên khi mới tập nghiên cứu khoa học, thì khó có kết quả có giá trị lớn ngay, mà thường phải bắt đầu bằng một vài vấn đề nhỏ hơn, để làm quen. Nhưng nếu lúc nào cũng chỉ làm thứ dễ dàng và ít giá trị, không dám làm cái khó hơn, có giá trị lớn hơn, thì khó có thể thành công trong khoa học. Giá trị của các công trình khoa học (đăng trên các tạp chí quốc tế, chứ chưa nói đến tạp chí “vườn” của VN) có thể chênh nhau hàng trăm lần. Có viết hàng chục hay hàng trăm bài báo khoa học “làng nhàng” có khi vẫn không bằng là làm được một công trình “để đời”.


Không chỉ trong khoa học, mà trong hầu hết mọi lĩnh vực khác, chất lượng là cái đặc biệt quan trọng. Ví dụ như trong kinh tế, sự phát triển bền vững (sustainable development) chính là sự phát triển về chất. Chúng ta không thể tăng khối lượng của các sản phẩm hay dịch vụ lên “mỗi năm 5-7%” mãi được, vì tài nguyên thiên nhiên là hữu hạn, nhưng cái chúng ta có thể tăng lên, đó là chất lượng. Nếu chúng ta cứ phá rừng phá núi, hủy hoại môi trường để đạt con số % phát triển GDP, thì có nguy cơ biến đất nước thành bãi rác. Cái máy tính bỏ túi ngày nay “khỏe hơn” cả một “khối thép” máy tính nặng hàng chục tấn của thế kỷ trước, đó là phát triển về chất. Cùng là đồ ăn với lượng calor như nhau, nhưng chất lượng khác nhau thì giá trị có thể chênh nhau hàng chục lần. Ở VN, đồ ăn không đảm bảo vệ sinh và chứa nhiều chất độc nên giá trị thấp, tuy giá có thể rẻ nhưng tính tỷ lệ chất lượng chia cho giá có khi vẫn thấp. Trong văn học, thì một quyển truyện như “Hoàng Tử Nhỏ” (Le Petit Prince) đủ làm cho ông Saint-Exupery trở thành nhà văn của thế kỷ 20 được hàng trăm triệu người trên thế giới tìm đọc. Ở Việt Nam cũng có những tác phẩm văn học mà những thế kỷ sau người ta vẫn còn nhớ đến, trong khi có hàng nghìn, hàng vạn tác phẩm văn học khác nhanh chóng rơi vào lãng quên.


Trong giáo dục, chất lượng cũng là cái cực kỳ quan trọng. Ảnh hưởng của một người thầy là rất lớn: trực tiếp đến hàng trăm, hàng nghìn học trò, và gián tiếp có thể đến hàng triệu người. Giá trị của giáo dục khó qui đổi thành tiền (một người vô văn hóa, thì có đắp thêm 1 triệu USD vào thì vẫn vô văn hóa). Chất lượng người thày tốt lên thì làm cho chất lượng xã hội tốt lên, và cái sự thay đổi chất lượng đó không đo được bằng tiền. Nhưng có thể hình dung một cách thô thiển là, một người thày tốt đem lại lợi ích cho học trò thêm hàng nghìn hay thậm chí hàng chục nghìn USD (thể hiện qua việc học trò có được việc tốt hơn, làm ra nhiều tiền của hơn …) so với một người thầy không tốt bằng. Với hàng trăm hay hàng nghìn học trò “qua tay” trong cuộc đời, thì một người thầy tốt có thể đem lại lợi ích hàng trăm nghìn, hay thậm chí hàng triệu USD, nhiều hơn cho xã hội so với một người thầy kém hơn.


Muốn có chất lượng tốt, thì chất lượng phải được (xã hội) coi trọng đúng mức, và (người thầy) phải chú tâm tìm cách nâng cao chất lượng. Các giảng viên đại học ở các nước tiên tiến thường không phải dạy quá nhiều giờ (trung bình khoảng 6 tiếng một tuần), và cũng không phải lo “kiếm cơm thêm” ngoài công việc chính. Họ có thời giờ để tiếp cận thông tin khoa học mới, chuẩn bị bài giảng cho tử tế, suy nghĩ cải tiến cách dạy cho hay, … (đấy là đối với những người có ý thức trong việc dạy học). Ở Việt Nam, các giáo viên và giảng viên dạy quá nhiều giờ, ngoài giờ chính thức đã nhiều còn dạy thêm tràn lan, có người “bán cháo phổi” liên tục một ngày đến mười mấy tiết. Họ bù lại việc thừ lao cho từng giờ dạy thấp, bằng việc dạy rất nhiều giờ. Nhưng trong điều kiện như vậy, thì họ sẽ dạy “như cái máy”, ít suy nghĩ, ít nhiệt tình với học sinh, ít thời gian chuẩn bị, không có thời giờ cập nhật kiến thức, khó mà có chất lượng cao được.


Xu hướng của thời đại internet, là các giảng viên có chất lượng dạy học cao sẽ ngày càng trở nên có giá trị, trong khi những ai dạy dở sẽ ngày càng mất giá trị. Trong điều kiện “không có lựa chọn”, thì thày dạy hay dạy dở thế nào học sinh “vẫn phải học thầy”, nhưng khi có lựa chọn, học sinh sẽ chọn học thầy hay, không đến học thầy dở. Việc điểm danh để bắt học sinh đi học, theo tôi là một hình thức giữ kỷ luật thô thiển kém hiệu quả. Thay vào điểm danh, nếu dạy hay, dạy cái có ý nghĩa, thì không bắt học sinh cũng tự động “tranh nhau” đi học. Tôi đã từng chứng kiến trường hợp có 2 giáo sư dạy cùng 1 môn ở 2 giảng đường khác nhau – ví số học sinh quá đông nên chia thành 2 giảng đường – nhưng một người dạy rất dở, và kết quả là học sinh ở giảng đường của người đó sau một thời gian chạy hết sang giảng đường bên kia. Internet sẽ tạo điều kiện cho học sinh tìm đến thầy hay dễ dàng hơn, qua các bài giảng video, các bài giảng online, … Các giảng viên sẽ phải giảng ít giờ hơn trước, nhưng chuẩn bị cho mỗi bài giảng nhiều hơn, và mỗi bài giảng hay sẽ đến được với nhiều học sinh hơn qua internet.


Quay lại việc (hướng dẫn) nghiên cứu khoa học. Làm sao để cho NCS hướng tới làm nghiên cứu khoa học “chất lượng cao” ? Một ông bạn tôi kể chuyện, NCS ở Đại học Berkeley toàn được các GS giới thiệu những vấn đề nghiên cứu, mà nếu giải quyết được thì có thể được giải Nobel hay giải Fields. Ở một nơi khác mà tôi khá quen biết là Đại học Utrecht, tuy có thể không bằng Berkeley, nhưng các luận án tiến sĩ ở đó mà tôi được biết thì luận án nào cũng xuất sắc, in thành sách, và có thể coi là tương đương với 1-2 bài báo dài 50 trang đăng trong một tạp chí khoa học “top 10”. Giá trị khoa học của một luận án như vậy có khi còn cao hơn tổng giá trị của mấy chục bài báo của cả đời một người làm khoa học “trung bình” ở Việt Nam. Bí quyết của họ để đạt được những kết quả có giá trị như vậy là gì ? Đó là: nghiên cứu một vấn đề “thực sự” (có ý nghĩa khoa học lớn), được cấp học bổng tốt trong thời gian đủ dài (không vội vàng: có thể làm PhD trong vòng 5 năm hoặc thậm chí lâu hơn thay vì cứ “3 năm phải ra lò”), để yên tâm tập trung nghiên cứu vấn đề đó (và để học những kiến thức cần thiết phục vụ cho việc nghiên cứu), có thầy hướng dẫn giỏi và điều kiện làm việc tốt, và không bị sức ép của những thứ hình thức (như phải thi chính trị, phải đăng mấy bài báo, …) hay sức ép về tài chính làm cản trở nghiên cứu. Ở Việt Nam bao giờ cũng phải tạo được những điều kiện như vậy, thì mới hy vọng có nhiều NCS “ra lò” trở thành nhà khoa học thực sự.

Chủ Nhật, 12 tháng 7, 2009

Putnam Mathematical Competitions from 1934 to 2008

Download bộ sưu tập đồ sộ này theo các link sau
  • Putnam mathematical competitions 1934 - 1984: DOWNLOAD

  • Putnam mathematical competitions 1985 - 2000: DOWNLOAD

  • Putnam mathematical competitions 2001 - 2008: DOWNLOAD

Thứ Bảy, 11 tháng 7, 2009

Một số điều NÊN và KHÔNG NÊN trong giảng dạy Toán - Phần 2

Bài viết của GS. Nguyễn Tiến Zũng, MATHVN xin giới thiệu với bạn đọc. Đại từ tôi trong này các bạn phải hiểu đó là thầy Zũng.
Trong loạt bài này, tôi sẽ viết dần một số quan điểm của tôi về những điều nên và không nên trong giảng dạy. Những quan điểm này được rút ra từ kinh nghiệm bản thân, việc nghiên cứu các liệu về giáo dục, sự trao đổi với đồng nghiệp và sinh viên, và những suy nghĩ để làm sao dạy học tốt hơn. Tất nhiên có những quan điểm của tôi có thể còn phiến diện. Xin mời mọi người trao đổi, viết lên những quan điểm và kinh nghiệm của mình.
>> Một số điều nên và không nên trong giảng dạy Toán - Phần 1
IV.
Nên: Giải thích bản chất và công dụng của các khái niệm mới một cách trực giác, đơn giản nhất có thể, dựa trên sự liên tưởng tới những cái mà học sinh đã từng biết.
Không nên: Đưa ra các khái niệm mới bằng các định nghĩa hình thức, phức tạp, tối nghĩa.

Các khái niệm toán học quan trọng đều có mục đích và ý nghĩa khi chúng được tạo ra. Và không có một khái niệm toán học quan trọng nào mà bản thân nó quá khó đến mức không thể hiểu được. Nó chỉ trở nên quá khó trong hai trường hợp: 1) người học chưa có đủ kiến thức chuẩn bị trước khi học khái niệm đó; 2) nó được giải thích một cách quá hình thức, rắm rối khó hiểu. Trong trường hợp thứ nhất, người học phải được hướng tới học những kiến thức chuẩn bị (ví dụ như trước khi học về các quá trình ngẫu nhiên phải có kiến thức cơ sở về xác suất và giải tích). Trong trường hợp thứ hai, lỗi thuộc về người dạy học và người viết sách dùng để học.

Các nghiên cứu về thần kinh học (neuroscience) cho thấy bộ nhớ “ngắn hạn” của não thì rất nhỏ (mỗi lúc chỉ chứa được khoảng 7 đơn vị thông tin ?), còn bộ nhớ dài hạn hơn thì chạy chậm. Thế nào là một đơn vị thông tin ? Tôi không có định nghĩa chính xác ở đây, nhưng ví dụ như dòng chữ “TON CHEVAL EST BANAL” đối với một người Pháp thì nó là một câu tiếng Pháp chỉ chứa không quá 4 đơn vị thông tin, rất dễ nhớ, trong khi đối với một người Việt không biết tiếng Pháp thì dòng chữ đó chứa đến hàng chục đơn vị thông tin – mỗi chữ cái là một đơn vị thông tin – rất khó nhớ. Một định nghĩa toán học, nếu quá dài và chứa quá nhiều đơn vị thông tin mới trong đó, thì học sinh sẽ rất khó khăn để hình dung toàn bộ định nghĩa đó, và như thế thì cũng rất khó hiểu định nghĩa.


Muốn cho học sinh hiểu được một khái niệm mới, thì cần phát biểu nó một cách sao cho nó dùng đến một lượng đơn vị thông tin mới ít nhất có thể (không quá 7 ?). Để giảm thiểu lượng đơn vị thông tin mới, cần vận dụng, liên tưởng tới những cái mà học sinh đã biết, dễ hình dung. Đấy cũng là cách mà các “cha đạo” giảng đạo cho “con chiên”: dùng ngôn ngữ giản dị, mà con chiên có thể hiểu được, để giảng giải những “tư tưởng lớn”. Khi có một khái niệm mới rất phức tạp, thì phải “chặt” nó thành các khái niệm nhỏ đơn giản hơn, dạy học các khái niệm đơn giản hơn trước, rồi xây dựng khái niệm phức tạp trên cơ sở các khái niệm đơn giản hơn đó (sau khi đã biến mỗi khái niệm đơn giản hơn thành “một đơn vị thông tin”).


Ví dụ: khái niệm “nhóm”. Có (ít nhất) 2 cách định nghĩa khác nhau thế nào là một nhóm.

Cách 1: Một nhóm là một tập hợp, với 2 phép tính (phép nhân và phép nghịch đảo), một phần tử đặc biệt (phần tử đơn vị), thỏa mãn 4-5 tiên đề gì đó.
Cách 2: một nhóm là tập hợp các “đối xứng” (hay nói “rộng hơn” là các phép biến đổi bảo toàn một số tính chất) của một vật.
Cách 1 chính xác về mặt toán học, nhưng dài, khó nhớ, khó hiểu với người mới gặp khái niệm nhóm lần đầu. Cách 2 trực giác hơn, cho ngay được nhiều ví dụ minh họa cụ thể (ví dụ như nhóm các đối xứng của hình lập phương, nhóm các biến đổi tuyến tính của R3, v.v.). Tuy rằng cách thứ hai này “thiếu chặt chẽ” về toán học (không thấy phép nhân đâu trong định nghĩa – thực ra phép nhân chẳng qua là phép “composition” tự nhiên của các đối xứng hay biến đổi), nhưng nó phản ánh đúng bản chất vấn đề của khái niệm nhóm, và nó cần dùng lượng một thông tin mới ít hơn nhiều so với cách 1. Tất nhiên toán học cần sự chặt chẽ logic. Nhưng sự chặt chẽ logic đó sẽ đến sau khi đã hiểu bản chất vấn đề (học sinh khi đã hiểu định nghĩa 2, thì sẽ hiểu ngay định nghĩa 1 chẳng qua là nhằm hình thức hóa một cách chặt chẽ định nghĩa 2), chứ không phải ngược lại.

Nói theo nhà toán học nổi tiếng V.I. Arnold, thì một định nghĩa tốt là 5 ví dụ tốt. Định nghĩa nào mà không có ví dụ minh họa thì “đáng ngờ”.Đi kèm với những khái niệm mới, định nghĩa mới, luôn cần những ví dụ minh họa (hay bài tập) cụ thể để thể hiện bản chất, ý nghĩa của khái niệm, định nghĩa đó. Chẳng hạn như khái niệm đa tạp khả vi. Ví dụ minh họa tiêu biểu nhất (và vì sao có từ “atlas” trong định nghĩa đa tạp) chính là bề mặt trái đất (hình dung như mặt cầu) cùng với một tệp bản đồ phủ toàn bộ trái đất. Một ví dụ tự nhiên khác của đa tạp khả vi, là tập tất cả các trạng thái vị trí của một vật thể (như máy bay, ô tô, cốc chén, …). Nếu định nghĩa một cấu trúc đa tạp khả vi là “một lớp tương đương của các atlas khả vi” thì đúng về mặt hình thức toán học, nhưng rắm rối khó hiểu, trong thực tế chỉ cần 1 atlas khả vi là đủ.

Có những khái niệm toán học “rất khó hiểu”, không phải vì bản thân nó “quá khó hiểu”, mà là bởi vì nó được trình bầy một cách rắm rối tối nghĩa. Một ví dụ tiêu biểu là “dãy phổ” (spectral sequence) trong đại số đồng điều và topo đại số, mà ngay trong số những người làm toán chuyên nghiệp cũng có rất nhiều người không hiểu nó. Phần lớn các sách khi viết về dãy phổ thì “bỏ bom” cho người đọc một dãy ma trận E^n_{pq} và một “phép phù thủy” để chuyển từ E^n sang E^{n+1}, mà không giải thích được rõ ràng tại sao. Trong khi đó, các ý tưởng xuất phát điểm của dãy phổ thực ra rất là trong sáng, và nếu đi theo các ý tưởng đó một cách tự nhiên để tìm ra dãy phổ thì sẽ thấy dãy phổ không có gì khó hiểu. (Khi có filtration thì đối đồng điều có thể được chặt ra nhiều khúc nhỏ bằng filtration đó, và có thể tính từng khúc nhỏ qua phương pháp “gần đúng”, khi lấy giới hạn thì được phép tính chính xác – “phép phù thủy” nhắc đến lúc trước, chẳng qua là projection của cùng 1 cái differential ban đầu lên những không gian gần đúng khác nhau).

Bản thân tôi khi đọc các tài liệu toán cũng rất vất vả chật vật để hiểu các khái niệm trong đó, và tất nhiên có nhiều khái niệm đến bây giờ tôi vẫn không hiểu và có thể sẽ không bao giờ hiểu. Có những khi hiểu ra rồi thì lại thấy “nó đơn giản mà tại sao người ta viết nó rắm rối thế”. Một đồng nghiệp của tôi kể: đọc các sách về cơ học cổ điển, không hiểu gì hết, cho đến khi đọc quyển sách của ông Arnold thì mới hiểu, vì ông ta viết cũng từng đấy thứ như trong các sách khác, nhưng sáng sủa hơn hẳn. Nhiều sách về xác suất thống kê có lẽ cũng ở tình trạng tương tự: hình thức, phức tạp mà không thể hiện rõ bản chất của các khái niệm. Tất nhiên cũng có sách về xác suất thống kê viết dễ hiểu, giải thích được đúng bản chất nhiều khái niệm mà không cần phải dùng đến những ngôn ngữ toán học “đao to búa lớn”.

Trên thế giới, có nhiều người mà dường như “nghề” của họ là biến cái dễ hiểu thành cái khó hiểu, biến cái đơn giản thành cái rối ren. Những người làm quảng cáo, thì khiên cho người tiêu dùng không phân biệt nổi hàng nào là tốt thật đối với họ nữa. Những người làm thuế, thì đẻ ra một bộ thuế rắm rối người thường không hiểu nổi, với một tỷ lỗ hổng trong đó, v.v. Ngay trong khoa học, có những người có quan niệm rằng cứ phải “phức tạp hóa” thì mới “quan trọng”. Thay vì nói “Vô va rửa tay” thì họ nó “có 1 phần tử người, mà ảnh qua ánh xạ tên gọi là Vô va, tại một thời điểm T, làm một động tác, thuộc phạm trù rửa, …” Nhưng mà một người “thầy” thực sự, phải làm cho những cái khó hiểu trở nên dễ hiểu đối với học trò.


V.
Nên: Luôn luôn quan tâm đến câu hỏi “để làm gì ?”
Không nên: Không cho học sinh biết họ học những thứ giảng viên dạy để làm gì, hay tệ hơn là bản thân giảng viên cũng không biết để làm gì.

Quá trình học (tiếp thu thông tin, kiến thức và kỹ năng mới) là một quá trình tự nhiên và liên tục của con người trong suốt cuộc đời, xảy ra ở mọi nơi mọi lúc (ngay cả giấc ngủ cũng góp phần trong việc học) chứ không phải chỉ ở trường hay khi làm bài tập về nhà. Những cái mà bộ não chúng ta tiếp thu nhanh nhất là những cái mà chúng ta thấy thích, và/hoặc thấy dễ hiểu, và/hoặc thấy quan trọng. Ngược lại, những cái mà chúng ta thấy nhàm chán, vô nghĩa, không quan trọng, sẽ bị bộ não đào thải không giữ lại, dù có cố nhồi vào. Bởi vậy, muốn cho học sinh tiếp thu tốt một kiến thức nào đó, cần làm cho học sinh có được ít nhất một trong mấy điều sau: 1) thích thú tò mò tìm hiều kiến thức đó; 2) thấy cái đó là có nghĩa (liên hệ được nhiều với những hiểu biết và thông tin khác mà học sinh đã có trong đầu); 3) thấy cái đó là quan trọng (cần thiết, có nhiều ứng dụng). Tất nhiên 3 điểm đó liên quan tới nhau. Ở đây tôi chủ yếu nói đến điểm thứ 3, tức là làm sao để học sinh thấy rằng những cái họ được học là quan trọng, cần thiết.

Một kiến thức đáng học là một kiến thức có ích gì đó, “để làm gì đó”. Nếu như học sinh học một kiến thứ với lý do duy nhất là “để thi đỗ” chứ không còn lý do nào khác, thì khi thi đỗ xong rồi kiến thức sẽ dễ bị đào thải khỏi não. Những môn thực sự đáng học, là những môn, mà kể cả nếu không phải thi, học sinh vẫn muốn được học, vì nó đem lại sự hiểu biết mà học sinh muốn có được và những kỹ năng cần cho cuộc sống và công việc của học sinh sau này. Còn những môn mà học “chỉ để thi đỗ” có lẽ là những môn không đáng học.

Cũng may là phần lớn giảng viên không rơi vào tình trạng “dạy môn không đáng học”, mà là dạy môn học đáng học, với một chương trình gồm các kiến thức đáng học. Tuy nhiên, giảng viên có thể biết là “học chúng để làm gì”, “vì sao đáng học”, trong khi mà học sinh chưa chắc đã biết. Chính bởi vậy luôn cần đặt câu hỏi “để làm gì”, khuyến khích học sinh đặt câu hỏi đó, và tìm những trả lời cho câu hỏi đó. Một trả lời giáo điều chung chung kiểu “nó quan trọng, phải học nó” ít có giá trị, mà cần có những trả lời cụ thể hơn, “nó quan trọng ở chỗ nào, dùng được vào trong những tình huống nào, đem lại các kỹ năng gì, v.v.”

Tiếc rằng việc giải thích ý nghĩa và công dụng của các kiến thức cho học sinh còn bị coi nhẹ, không chỉ ở Việt Nam. Có lần tôi hỏi một lớp đại học ngành toán đang học đại số tuyến tính ở Việt Nam là “đại số tuyến tính dùng làm gì ?”. Họ trả lời là không biết. Có lần tôi hỏi một nhóm sinh viên ngành “Life Sciences” ở Pháp mới học xong môn phương trình vi phân tuyến tính, rằng họ có biết vị dụ phương trình nào xuất phát từ các vấn đề thực tế không. Họ cũng trả lời là không hề biết. Nếu như giảng viên giới thiệu cho học sinh biết các công dụng của những kiến thức họ được học qua các ví dụ (ví dụ như những phương trình vi phân tuyến tính xuất hiện thế nào trong các mô hình về tăng trưởng), thì có thể họ sẽ thấy những cái họ học có nghĩa hơn, đáng để học hơn, dễ nhớ hơn.

Trong công việc sau này của học sinh khi đã ra trường, thì câu hỏi “để làm gì” lại càng đặc biệt quan trọng. Mọi hoạt động của một tổ chức hay doanh nghiệp tất nhiên đều phải có mục đích. Ngay trong công việc nghiên cứu khoa học, có nhiều người không làm được kết quả nghiên cứu quan trọng nào (tạm định nghĩa quan trọng = được nhiều người khác sử dụng) không phải là vì “dốt” mà là vì “không biết lựa chọn vấn đề để nghiên cứu”, mất thời giờ nghiên cứu vào những cái ít ý nghĩa, ít ai quan tâm đến. Bởi vậy học sinh cần làm quen với việc sử dụng câu hỏi “để làm gì” từ khi đi học, như một vũ khí lợi hại trong việc chọn lựa các quyết định của mình.


VI.
Nên: Tổ chức thi cử sao cho nhẹ nhàng nhất, phản ánh đúng trình độ học sinh, và khiến cho học sinh học tốt nhất.
Không nên: Chạy theo thành tích, hay tệ hơn là gian trá và khuyến khích gian trá trong thi cử.

Việc kiểm tra đánh giá trình độ và kết quả học tập của học sinh (cũng như trình độ và kết quả làm việc của người lớn) là việc cần thiết. Nó cần thiết bởi có rất nhiều quyết định phải dựa trên những sự kiểm tra và đánh giá đó, ví dụ như học sinh có đủ trình độ để có thể hiểu những môn học tiếp theo không, có đáng tin tưởng để giao một việc nào đó cho không, có xứng đáng được nhận học bổng hay giải thưởng nào đó không, v.v. Bởi vậy giảng viên không thể tránh khỏi việc tổ chức kiểm tra, thi cử cho học sinh. Cái chúng ta có thể tránh, đó là làm sao để đừng biến các cuộc kiểm tra thi cử đó thành “sự tra tấn” học sinh, và có khi cả giảng viên.

Một “định luật” trong giáo dục là THI SAO HỌC VẬY. Tuy mục đích cao cả dài hạn của việc học là để mở mang hiểu biết và rèn luyện kỹ năng, nhưng phần lớn học sinh học theo mục đích ngắn hạn, tức là để thi cho đỗ hay cho được giải. Trách nhiệm của người thầy và của hệ thống giáo dục là làm sao cho hai mục đích đó trùng với nhau, tức là cần tổ chức thi cử sao cho học sinh nào mở mang hiểu biết và rèn luyện các kỹ năng được nhiều nhất cũng là học sinh đạt kết quả tốt nhất trong thi cử.

Nếu “thi lệch” thì học sinh sẽ học lệch. Ví dụ như thi tốt nghiệp phổ thông, nếu chỉ thi có 3-4 môn thì học sinh cũng sẽ chỉ học 3-4 môn mà bỏ bê các môn khác. Trong một môn thi, nếu chỉ hạn chế đề thi vào một phần kiến thức nào đó, thì học sinh sẽ chỉ tập trung học phần đó thôi, bỏ quên những phần khác. Nếu đề thi toàn bài mẹo mực, thì học sinh cũng học mẹo mực mà thiếu cơ bản. Nếu thi cử có thể gian lận, thì học hành cũng không thực chất. Nếu thi cử quá nhiều lần, thì học sinh sẽ rất mệt mỏi, suốt ngày phải ôn thi, không còn thì giờ cho những kiến thức mới và những thứ khác. Nếu thi theo kiểu bắt nhớ nhiều mà suy nghĩ ít, thì học sinh sẽ học thành những con vẹt, học thuộc lòng các thứ, mà không hiểu, không suy nghĩ. Mấy đề thi trắc nghiệm ở Việt Nam mấy năm gần đây đang có xu hướng nguy hiểm như vậy: đề thi dài, với nhiều câu hỏi tủn mủn, đòi hỏi học sinh phải nhớ mà điền câu trả lời, chứ không đòi hỏi phải đào sâu suy nghĩ gì hết. Thậm chí thi học sinh giỏi toán toàn quốc cũng có lần được thi theo kiểu bài tủn mủn như vậy, và kết quả là việc chọn lọc đội tuyển thi toán quốc tế năm đó bị sai lệch nhiều. Bản thân chuyện thi trắc nghiệm không phải là một chuyện tồi, thi trắc nghiệm có những công dụng của nó, ý tôi muốn nói ở đây là cách dùng nó trong thi cử ở Việt Nam chưa được tốt .

Thi cử có thể chia làm 2 loại chính: loại kiểm tra (ví dụ như kiểm tra xem có đủ trình độ để đáng được lên lớp hay được cấp bằng không), và loại thi đấu (tuyển chọn, khi mà số suất hay số giải thưởng có hạn). Loại thi đấu thì cần thang điểm chi tiết (ví dụ như khi hai người có điểm xấp xỉ nhau mà chỉ có 1 suất thì vẫn phải loại 1 người, và khi đó thì chênh nhau ¼ điểm cũng quan trọng), nhưng đối với loại kiểm tra, không cần chấm điểm quá chi li: những thang điểm quá nhiều bậc điểm (ví dụ như thang điểm 20, tính từng ½ điểm một, tổng cộng thành 41 bậc điểm) là không cần thiết, mà chỉ cần như các nước Nga, Đức hay Mỹ (chỉ có 4-5 bậc điểm) làm là đủ. Kinh nghiệm chấm thi sinh viên của tôi cho thấy chấm chi li từng điểm nhỏ một chỉ mất thời giờ mà không thay đổi bản chất của điểm kiểm tra: sinh viên nào kém, sinh viên nào giỏi chỉ cần nhìn qua tổng thể bài kiểm tra là biết ngay.

Kiểm tra nói là một hình thức kiểm tra khá tốt: trong vòng 10-15 phút hỏi thi cộng với một vài bài tập làm tại chỗ là giảng viên có thể “ước lượng” được mức hiểu kiến thức của sinh viên khá chính xác. Tuy nhiên, kiểu thi nói còn rất hiếm ở Việt Nam, và ngay ở Pháp cũng không phổ biến lắm. Có nhiều người lo ngại rằng thi nói sẽ khó khách quan. Điều này có lẽ đúng trong điều kiện Việt Nam hiện nay, khi có nhiều giảng viên thiếu nghiêm túc trong thi cử. Điểm kiểm tra để “tính sổ” ở Việt Nam trong điều kiện như vậy thì cần qua thi viết cho khách quan, đỡ bị gian lận. Nhưng không phải bài kiểm tra nào cũng cần “tính vào sổ”. Số lượng các kiểm tra “chính thức”, “tính sổ” nên ít thôi, ngoài ra thay bằng những kiểm tra “không chính thức”, không phải để tính điểm học sinh, mà để giúp học sinh hay phụ huynh học sinh biết xem trình độ đang ra sao, có những điểm yếu điểm mạnh gì. Hệ thống giáo dục phổ thông cấp 1 ở Pháp tính “điểm” như vậy: Điểm không phải là điểm “7” hay “10” mà là điểm “phần này đã nắm tốt”, “phần kia còn phải học thêm”.

Việc giao nhiều bài tập bắt buộc về nhà, rồi kiểm tra tính điểm các bài đó, nếu không cẩn thận có thể biến thành “nhục hình” với học sinh. Nếu học sinh ngày nào cũng phải thức quá nửa đêm làm bài tập, không đủ thời gian để ngủ, thì điều đó sẽ làm ảnh hưởng xấu đến sự phát triển bình thường của học sinh. Chúng ta nên chú ý rằng giấc ngủ cũng là một phần quan trọng trong quá trình học: chính trong giấc ngủ, não được “làm vệ sinh”, thải bớt “rác” ra khỏi não để có chỗ cho hôm sau đón nhận thông tin mới, và sắp xếp lại các thông tin thu nhận trong ngày lại, liên kết với các thông tin khác đã có trong não, để nó trở thành “thông tin dài hạn”, “kiến thức”. Giai đoạn con người học nhanh nhất là khi còn ít tuổi, cũng là giai đoạn có nhu cầu ngủ nhiều nhất, còn càng lớn tuổi học cái mới càng ít đi và nhu cầu ngủ cũng ít đi. Trình độ học sinh, ít ra là trong môn toán, không thể hiện qua việc “đã làm bao nhiêu bài tập dạng đó” mà là “nếu gặp bài tập như vậy có làm được không”. Tất nhiên muốn hiểu biết thì phải luyện tập. Nhưng cứ làm thật nhiều bài tập giống nhau như một cái máy mà không suy nghĩ, thì phí thời gian. Thay vào đó chỉ cần làm ít bài hơn, nhưng làm bài nào hiểu bài đó. Theo tôi nói chung không nên tính điểm bắt buộc cho các bài tập về nhà, mà thay vào đó tính điểm thưởng thì tốt hơn.

Một điều khá phổ biến và đáng lo ngại ở Việt Nam là học sinh được chính thầy cô giáo dạy cho sự làm ăn gian dối. Có khi giáo viên làm thể để “lấy thành tích” cho mình. Ví dụ như khi có đoàn kiểm tra đến dự lớp, thì dặn trước là cả lớp phải giơ tay xin phát biểu, cô sẽ chỉ gọi mấy bạn đã nhắm trước thôi. Hay là giao bài tập rất khó về nhà cho học sinh, mà biết chắc là học sinh không làm được nhưng bố mẹ học sinh sẽ làm hộ cho, để lấy thành tích dạy giỏi. Hoặc là mua bán điểm với học sinh: cứ nộp thầy 1 triệu thì lên 1 điểm chẳng hạn. Nhưng cũng có nhiều trường hợp mà giáo viên có ý định tốt, vô tư lợi, nhưng vì quan điểm là “làm như thế là để giúp học sinh” nên tìm cách cho học sinh “ăn gian” để được thêm điểm.

Trong hầu hết các trường hợp, thì khuyến khích học sinh gian dối là làm hại học sinh. Như Mark Twain có nói: ” It is better to deserve honors and not have them than to have them and not deserve them.” Có gắn bao nhiêu thành tích rởm vào người, thì cũng không làm cho người trở nên giá trị hơn. Học sinh mà được dạy thói làm ăn gian dối từ bé, thì có nguy cơ trở thành những con người giả dối, mất giá trị. Tất nhiên, trong một xã hội mà cơ chế và luật lệ “ấm ớ”, và gian dối trở thành phong trào, ai mà không gian dối, không làm sai luật thì thiệt thòi không sống được, thì buộc người ta phải gian dối. Tôi không phê phán những hành động gian dối do “hành cảnh bắt buộc”. Nhưng chúng ta đừng lạm dụng “vũ khí” này, và hãy hướng cho chọ sinh của chúng ta đến một xã hội mới lành mạnh hơn, mà ở đó ít cần đến sự gian dối. Để đạt được vậy, tất nhiên các “luật chơi” phải được thay đổi sao cho hợp lý và minh bạch hơn.

Tất nhiên, không chỉ ở Việt Nam, mà trên thế giới cũng có nhiều người hám “danh hão” và làm ăn giả dối, tuy tỷ lệ chắc là ít hơn nhiều. Tôi biết cả những giáo sư nước ngoài có trình độ cao, nhưng vì “quá hám danh” nên dẫn đến làm ăn giả dối. Sinh viên Pháp mà tôi dạy cũng có quay cóp. Bản thân tôi khi đi học cũng từng quay cóp. Tất nhiên tôi chẳng có gì để tự hào vê chuyện đó, nhưng cũng không đến nỗi “quá xấu hổ” khi mà những người xung quanh tôi cũng quay cóp. Chúng ta là con người thì không hoàn thiện, nhưng hãy hướng tới hoàn thiện, giúp cho các thế hệ sau hoàn thiện hơn.
(... còn nữa ...)
Theo Zung's Website

Học Toán được cái gì ?

Bài viết của GS. Nguyễn Tiến Zũng. Bài dịch của Lưu Trọng Luân và TS. Trần Nam Dũng. MATHVN xin giới thiệu cùng bạn đọc.

Bằng cấp Toán học mang lại lợi ích gì?

Dĩ nhiên là các kỹ năng tính toán rồi, bạn cần gì phải thắc mắc chứ.
Thực ra, theo trang web của Khoa Toán ĐH Warwick, thì bạn không chỉ có được những kỹ năng tính toán mà còn đạt được một số kỹ năng thiết yếu khác nữa.

Những kỹ năng về toán học

Là một sinh viên toán học, bạn sẽ học tất cả những môn chính của toán học hiện đại: đại số, giải tích, hình học, thống kê và toán ứng dụng. Trong toàn khóa học này, bạn sẽ được học:


  • Ngôn ngữ toán học và các qui tắc lập luận.

  • Cách phát biểu một mệnh đề toán học chính xác.

  • Cách chứng minh một giả thuyết toán học đúng hoặc sai.

  • Cách rút trích ý một bài toán trong sách.

  • Cách sử dụng toán học để miêu tả thế giới tự nhiên.



Những kỹ năng Phân tích

Một khi đã có bằng cấp về toán học, bạn sẽ không bao giờ chấp nhận việc lập luận hời hợt. Toán học mang lại cho bạn khả năng:

  • Suy nghĩ mạch lạc

  • Lưu ý đến từng chi tiết

  • Làm chủ những ý tưởng chính xác và phức tạp

  • Lập luận phức tạp

  • Xây dựng những lý lẽ lô-gíc và chỉ ra nhưng lý lẽ phi lô-gíc


Các kỹ năng giải quyết vấn đề

Bạn sẽ được giao cho vô số những bài toán để giải quyết trong suốt khóa học. Trải nghiệm này sẽ giúp bạn:


  • Hệ thống một vấn đề bằng những lý lẽ chính xác, nhận dạng được những vấn đề then chốt


  • Trình bày một giải pháp rõ ràng, đưa ra những giả định rõ ràng


  • Hiểu thấu một vấn đề khó bằng cách nhìn vào những trường hợp đặc biệt hoặc những vấn đề phụ


  • Linh hoạt và tiếp cận cùng một vấn đề bằng nhiều quan điểm khác nhau


  • Đối phó với vấn đề một cách tự tin, ngay cả khi chưa có giải pháp rõ ràng


  • Tìm kiếm sự giúp đỡ khi cần



Các kỹ năng tìm tòi

Trong quá trình học, thỉnh thoảng bạn sẽ lâm vào tình huống cố gắng hiểu được những bài toán có vẻ quá khó và cố giải quyết những vấn đề mà thoạt đầu tưởng chừng như không thể. Bạn có thể được giao viết những bài luận và những dự án khiến bạn phải tự mình tìm hiểu một phạm trù toán học mà bạn chưa biết gì. Việc này sẽ biến bạn thành một nhà điều tra nghiệp dự, lần theo tiếng gọi của thông tin và nguồn cảm hứng. Bạn sẽ có những trải nghiệm:


  • Tra cứu các ghi chép về bài giảng, giáo trình, cũng như sách tham khảo


  • Xới tung thư viện


  • Tìm kiếm các nguồn thông tin tham khảo


  • Rút tỉa thông tin từ mọi nhà toán học mà bạn gặp (những sinh viên khác, sinh viên đã tốt nghiệp, người hướng dẫn và những giảng viên)


  • Tư duy



Các kỹ năng trao đổi thông tin

Một bằng cấp toán học sẽ phát triển khả năng nắm bắt và trao đổi ở mức độ cao những thông tin chuyên môn. Trong quá trình nghe giảng, bạn sẽ được yêu cầu sắp xếp và lưu trữ một khối lượng lớn thông tin toán học ở dạng nói cũng như viết. Những bài tập về nhà, và bất cứ bài luận hay dự án nào mà bạn thực hiện, cũng sẽ đòi hỏi sự trình bày mạch lạc theo ngôn ngữ toán học. Trong quá trình được kèm cặp, bạn sẽ tham gia trao đổi những ý kiến về toán học với người giám sát của mình và những sinh viên cùng khóa. Bạn còn tham gia thảo luận các vấn đề toán học qua việc đối thoại với các giảng viên và sinh viên cùng khóa. Ở những năm cuối, bạn có thể có cơ hội giảng dạy những sinh viên chưa tốt nghiệp khác. Qua những trải nghiệp này, bạn sẽ học được cách:


  • Lắng nghe hiệu quả


  • Viết tốt các vấn đề toán học


  • Viết luận và báo cáo


  • Thuyết trình một vấn đề toán học trước cả nhóm



Các kỹ năng vi tính

IT là từ viết tắt của Information Technology (công nghệ thông tin), bao hàm nghĩa “bất cứ thứ gì có liên quan đến máy vi tính”. Trong suốt quá trình học, bạn sẽ được quyền sử dụng các tiện ích công nghệ thông tin của trường. Bạn sẽ được:


  • Sử dụng e-mail và truy cập internet

  • Học một ngôn ngữ lập trình

  • Giải quyết các vấn đề bằng phần mềm toán học

  • Học kỹ năng soạn thảo văn bản, kể cả ở dạng chữ viết thong thường và dạng ký hiệu toán học


Những thói quen làm việc tốt
Để trở thành một sinh viên toán học thành công, bạn sẽ phải:

  • Tỉ mỉ và chịu khó trong công việc

  • Tổ chức tốt thời gian biểu và đúng hạn

  • Làm việc dưới áp lực, đặc biệt là khoảng thời gian gần kỳ thi

  • Làm việc độc lập mà không cần giáo viên hỗ trợ thường xuyên

  • Hợp tác với những sinh viên khác để giải quyết các vấn đề chung


Những nét tính cách hữu ích

Một giáo sư toán học từng nói với mỗi lứa sinh viên sắp vào năm nhất rằng bằng cấp toán học sẽ thay đổi họ suốt cả cuộc đời. Vật lộn thành công với những ý tưởng khó hiểu và các vấn đề khó giải quyết sẽ tạo nên:


  • Tính quả quyết

  • Tính kiên trì

  • Tính sáng tạo

  • Sự tự tin

  • Tính thận trọng trong tư duy

Một số điều NÊN và KHÔNG NÊN trong giảng dạy Toán - Phần 1

Bài viết của GS. Nguyễn Tiến Zũng, MATHVN xin giới thiệu với bạn đọc. Đại từ tôi trong này các bạn phải hiểu đó là thầy Zũng.
Trong loạt bài này, tôi sẽ viết dần một số quan điểm của tôi về những điều nên và không nên trong giảng dạy. Những quan điểm này được rút ra từ kinh nghiệm bản thân, việc nghiên cứu các liệu về giáo dục, sự trao đổi với đồng nghiệp và sinh viên, và những suy nghĩ để làm sao dạy học tốt hơn. Tất nhiên có những quan điểm của tôi có thể còn phiến diện. Xin mời mọi người trao đổi, viết lên những quan điểm và kinh nghiệm của mình.

Tôi sẽ chủ yếu nói về việc dạy toán, tuy rằng nhiều điểm áp dụng được cho hầu hết các môn học khác. Tôi sẽ dùng từ “giảng viên” để chỉ cả giảng viên đại học lẫn giáo viên phổ thông, từ “học sinh” (student) để chỉ học sinh sinh viên hay học viên ở mọi cấp học, từ phổ thông cho đến sau đại học. Tôi viết không theo thứ tự đặc biệt nào.

I.
Nên: Thỉnh thoảng thay đổi môn dạy nếu có thể. Nếu dạy một môn nhiều lần, thì cải tiến thường xuyên phương pháp và nội dung dạy môn đó.
Không nên: Dạy mãi năm này qua năm khác một môn, với giáo trình nhiều năm không thay đổi.

Các chức vụ quản lý lãnh đạo thường có nhiệm kỳ, và thường có nguyên tắc là không ai làm quá 2 nhiệm kỳ ở cùng 1 vị trí. Lý do là để tạo sự thay đổi cải tiến thường xuyên, tránh sự trì trệ. Ngay trong việc dạy học cũng vậy: một người mà dạy quá nhiều năm cùng một thứ, thì dễ dẫn đến nhàm chán trì trệ. Để tránh chuyện đó, có những cơ sở đại học có qui định là các môn học cũng có nhiệm kỳ: ai mà dạy môn nào đó được 4-5 năm rồi thì phải giao cho người khác đảm nhiệm, trừ trường hợp không tìm được người thay thế.

Nhiều khoa toán có phân chia việc dạy các môn cho các tổ bộ môn, ví dụ môn “phương trình vi phân” thì chỉ dành cho người của tổ bộ môn phương trình vi phân dạy. Việc phân chia như vậy có cái lợi là đảm bảo chất lượng dạy,đặc biệt là trong điều kiện trình độ giảng viên nói chung còn thấp, phải “chuyên môn hóa” trong việc dạy để đảm bản chất lượng tối thiểu. Tuy nhiên nó có điểm hạn chế, là nó tạo ra xu hướng người của tổ bộ môn nào sẽ chỉ biết chuyên ngành hẹp đấy, tầm nhìn không mở rộng ra. Ỏ một số trường đại học tiên tiến, nơi có nhiều giảng viên trình độ cao (và với nguyên tắc là đã là giáo sư hay giảng viên cao cấp thì đủ trình độ để dạy bất cứ môn nào trong các môn toán bắt buộc ở bậc cử nhân), công việc giảng dạy không phân chia theo tổ bộ môn hẹp như vậy, mà giảng viên (cao cấp) nào cũng có thể đăng ký dạy bất cứ môn nào ở bậc cử nhân.

Tất nhiên, việc thay đổi môn dạy đòi hỏi các giảng viên phải cố gắng hơn trong việc chuẩn bị bài giảng (mỗi lần đổi môn dạy, là một lần phải chuẩn bị bài giảng gần như từ đầu), nhưng đổi lại nó làm tăng trình độ của bản thân giảng viên, giúp cho giảng viên tìm hiểu những cái mới (mà nếu không đổi môn dạy thì sẽ không tìm hiểu, do sức ỳ). Đặc biệt là các môn ở bậc cao học: việc chuẩn bị bài giảng cho một môn cao học mới có thể giúp ích trực tiếp cho việc nghiên cứu khoa học của giảng viên.

Tôi có một số kinh nghiệm cá nhân về việc này. Ví dụ như một lần năm 1999 tôi nhận dạy 1 học kỳ cao học về hệ động lực Hamilton, và trong quá trình đọc tài liệu để chuẩn bị bài giảng cho môn đó, tôi phát hiện ra một số vấn đề cơ bản liên quan đến dạng chuẩn địa phương của hệ động lực chưa được nghiên cứu, và điều đó thúc đẩy tôi nghiên cứu được một số kết quả khá tốt. Năm 2008 tôi nhận dạy môn đại số (mở rộng trường và một ít đại số giao hoán) cho sinh viên toán năm thứ 4, tuy rằng trước đó tôi hầu như không đụng chạm đến những thứ đó. Việc dạy môn đại số đã giúp tôi nắm chắc thêm được một số kiến thức về đại số, ví dụ như hiểu thêm ý nghĩa của tính chất Noether (đây là tính chất đặc trưng của “đại số”, đối ngược với “giải tích”).

Tất nhiên có nhiều người, do điều kiện công việc, phải dạy cùng một môn (ví dụ như môn Toán lớp 12) trong nhiều năm. Để tránh trì trệ trong trường hợp đó, cần thường xuyên cải tiến phương pháp và nội dung giảng dạy (đưa vào những ví dụ minh họa mới và bài tập mới từ thực tế hiện tại, sử dụng những công nghệ mới và công cụ học tập mới, tìm các cách giải thích mới dễ hiểu hơn, v.v.)

II.
Nên: Dạy và kiểm tra kiến thức học sinh theo lối “học để hiểu”
Không nên: Tạo cho học sinh thói quen học vẹt, chỉ nhớ mà không hiểu

Các nhà giáo dục học và thần kinh học trên thế giới đã làm nhiều phân tích và thí nghiệm cho thấy, khi bộ óc con người “hiểu” một cái gì đó (tức là có thể “make sense” cái đó, liên tưởng được với những kiến thức và thông tin khác đã có sẵn trong não) thì dễ nhớ nó (do thiết lập được nhiều “dây nối” liên quan đến kiến thức đó trong mạng thần kinh của não — một neuron thần kinh có thể có hàng chục nghìn dây nối đến các neuron khác), còn khi chỉ cố nhồi nhét các thông tin riêng lẻ vào não (kiểu học vẹt) mà không liên hệ được với các kiến thức khác đã có trong não, thì thông tin đó rất khó nhớ, dễ bị não đào thải.

Thực ra thì môn học nào cũng cần “hiểu” và “nhớ”, tuy rằng tỷ lệ giữa “hiểu” và “nhớ” giữa các môn khác nhau có khác nhau: ví dụ như ngoại ngữ thì không có gì phức tạp khó hiểu lắm nhưng cần nhớ nhiều (tất nhiên để nhớ được các câu chữ ngoại ngữ thì cũng phải liên tưởng được các câu chữ đó với hình ảnh hay ỹ nghĩa của chúng và với những thứ khác có trong não), nhưng toán học thì ngược lại: không cần nhớ nhiều lắm, nhưng phải hiểu được các kiến thức, và quá trình hiểu đó đòi hỏi nhiều công sức thời gian. Có những công thức và định nghĩa toán mà nếu chúng ta quên đi chúng ta vẫn có thể tự tìm lại được và dùng được nếu đã hiểu bản chất của công thức và định nghĩa đó, còn nếu chúng ta chỉ nhớ công thức và định nghĩa đó như con vẹt mà không hiểu nó, thì cũng không dùng được nó, và như vậy thì cũng không hơn gì người chưa từng biết nó. Ví dụ như công thức tính Christoffel symbol cho liên thông Riemann của một Riemannian metric là một công thức hơi dài, và tôi chẳng bao giờ nhớ được chính xác nó lâu tuy “mang tiếng” là người làm hình học vi phân: cứ mỗi lần đụng đến thì xem lại, nhớ được một lúc, rồi lại quên. Nhưng điều đó không làm tôi băn khoăn, vì tôi hiểu bản chất của Christoffel symbol và các tính chất cơ bản của liên thông Riemann, từ đó có thể tự nghĩ ra lại được công thức nếu cần thiết (tốn một vài phút) hoặc tra trên internet ra ngay.

Sinh viên ngày nay (là những chuyên gia của ngày mai) có thể tra cứu rất nhanh mọi định nghĩa, công thức, v.v., nhưng để hiểu chúng thì vẫn phải tự hiểu, không có máy móc nào hiểu hộ được. Cách đây 5-10 năm, theo thông lệ của những người dạy trước tôi, tôi thường không cho phép sinh viên mang tài liệu vào phòng thi trong các kỳ thi cuối học kỳ, và đề bài thi hay có 1 câu hỏi lý thuyết (tức là phát biểu đúng 1 định nghĩa hay định lý gì đó thì được điểm). Nhưng trong thời đại mới, việc nhớ y nguyên các định nghĩa và định lý có ít giá trị, mà cái chính là phải hiểu để mà sử dụng được chúng. Bởi vậy những năm gần đây, trong các kỳ thi tôi dần dần cho phép học sinh mang bất cứ tài liệu nào vào phòng thi, và đề thi không còn các câu hỏi “phát biểu định lý” nữa. Thay vào đó là những bài tập (tương đối đơn giản, và thường gần giống các bài có trong các tài liệu nhưng đã thay tham số) để kiểm tra xem học sinh có hiểu và sử dụng được các kiến thức cơ bản không.

Về mặt hình thức, chương trình học ở Việt Nam (kể cả bậc phổ thông lẫn bậc đại học) khá nặng, nhưng là nặng về “nhớ” mà nhẹ về “hiểu”, và trình độ trung bình của học sinh Việt Nam thì yếu so với thế giới (tất nhiên vẫn có học sinh rất giỏi, nhưng tỷ lệ học sinh giỏi thực sự rất ít, và cũng khó so được với giỏi của phương Tây). Vấn đề không phải là do người Việt Nam sinh ra kém thông minh, mà là do điều kiện và phương pháp giáo dục, chứ trẻ em gốc Việt Nam lớn lên ở nước ngoài thường là thành công trong đường học hành. Hiện tượng rất phổ biến ở Việt Nam là học sinh học thuộc lòng các “kiến thức” trước mỗi kỳ kiểm tra, rồi sau khi kiểm tra xong thì “chữ thầy trả thầy”. Việt Nam rất cần cải cách chương trình giáo dục theo hướng tăng sự “hiểu” lên, và giảm sự “học gạo”, “nhớ như con vẹt”. Tôi có phỏng vấn nhiều sinh viên tốt nghiệp loại giỏi ngành toán ở Việt Nam, nhưng khi hỏi một số kiến thức khá cơ bản thì nhiều em lại không biết. Lỗi không phải tại các em mà có lẽ tại hệ thống giáo dục. Nhiều thầy cô giáo chỉ khuyến khích học sinh làm bài kiểm tra giống hệt lời giải mẫu của mình, chứ làm kiểu khác đi, tuy có thể thú vị hơn cách của thầy thì có khi lại bị trừ điểm. Tôi đã chứng kiến trường hợp sinh viên chỉ đạt điểm thi 7-8 lại giỏi hơn sinh viên đạt điểm thi 9-10 vì kiểu chấm thi như vậy. Kiểu chấm điểm như thế chỉ khuyến khích học vẹt chứ không khuyến khích sự sáng tạo hiểu biết.

III.
Nên: Dạy những cái cơ bản nhất, nhiều công dụng nhất
Không nên: Mất nhiều thời giờ vào những thứ ít hoặc không dùng đến

Trên đời có rất nhiều cái để học, trong khi thời gian và sức lực của chúng ta có hạn, và bởi vậy chúng ta luôn phải lựa chọn xem nên học (hay dạy học) cái gì. Nếu chúng ta phung phí quá nhiều thời gian vào những cái ít công dụng (hoặc thậm chí phản tác dụng, ví dụ như những lý thuyết về chính trị hay kinh tế trái ngược với thực tế), thì sẽ không còn đủ thời gian để học (hay dạy học) những cái quan trọng hơn, hữu ích hơn.

Tất nhiên, mức độ “quan trọng, hữu ích” của từng kiến thức đối với mỗi người khác nhau thì khác nhau, và phụ thuộc vào nhiều yếu tố như thời gian, hoàn cảnh, sở trường, v.v. Ví dụ như học nói và viết tiếng Việt cho đàng hoàng là không thể thiếu với người Việt, nhưng lại không cần thiết với người Nga. Những người muốn làm nghề toán thì phải học nhiều về toán, còn sinh viên đại học các ngành khác nói chung chỉ cần học một số kiến thức toán cao cấp cơ bản nhất mà sẽ cần trong công việc của họ. Những người muốn làm toán ứng dụng, thì ngoài các môn toán, cần phải học các môn mà họ định mang toán ứng dụng vào đó.

Ngay trong các môn toán, không phải các kiến thức nào cũng quan trọng như nhau. Và “độ quan trọng” và “độ phức tạp” là hai khái niệm khác nhau: không phải cái gì quan trọng cũng phức tạp khó hiểu, và không phải cái gì rắm rối khó hiểu cũng quan trọng. Giảng viên cần tránh dẫn dắt học sinh lao đầu vào những cái rắm rối phức tạp nhưng ít công dụng. Thay vào đó, cần dành nhiều thời gian cho những cái cơ bản, nhiều công dụng nhất. Nếu là cái vừa cơ bản và vừa khó, thì lại càng cần dành đủ thời gian cho nó, vì khí nắm bắt được nó tức là nắm bắt được một công cụ mạnh.

Một ví dụ là đạo hàm và tích phân. Đây là những khái niệm cơ bản vô cùng quan trọng trong toán học. Học sinh cần hiểu định nghĩa, bản chất và công dụng của chúng, và nắm được một số nguyên tắc cơ bản và công thức đơn giản, ví dụ như nguyên tắc Leibniz cho đạo hàm của một tích, hay công thức “đạo hàm của sin x bằng cos x”. Tuy nhiên nếu bắt học sinh học thuộc hàng trăm công thức tính đạo hàm và tích phân khách nhau, thì sẽ tốn thời gian vô ích vì phần lớn các công thức thức đó sẽ không dùng đến sau này, hoặc nếu dùng đến thì có thể tra cứu được dễ dàng. Một lần tôi thấy có một sách tiếng Việt về tính tích phân cho học sinh, dày hơn 150 trang, với rất nhiều công thức phức tạp dài dòng (ví dụ như công thức tính tính phân của một hàm số có dạng thương của hai biểu thức lượng giác), mà ngay những người làm toán chuyên nghiệp cũng rất hiếm khi cần đến. Thay vì tốn nhiều thời gian vào những công thức phức tạp mà không cần dùng đó, học những thứ cơ bản khác sẽ có ích hơn.

Một lần nhà xuất bản Springer có lần nhờ tôi làm phản biện cho 1 quyển sách về hình học vi phân và ứng dụng. Tôi đã khuyên Springer không in sách đó, và một trong các lý do là quyển sách chứa quá nhiều khái niệm mà ngay trong sách đó cũng không dùng đến. Ví dụ như khái niệm “không gian Lindeloff” được đưa vào ngay ở đầu sách, phát biểu thành 1 định nghĩa có đánh số hẳn hoi (chứ không phải là chỉ nhắc qua nó trong một “remark”), nhưng không dùng đến nó lúc nào trong sách, tôi không hiểu người viết sách đưa định nghĩa đó vào trong sách để làm gì.

Một ví dụ khác: các bất đẳng thức. Có những bất đẳng thức “có tên tuổi”, không phải vì nó “khó”, mà là vì nó có ý nghĩa (nó xuất hiện trong các vấn đề hình học, số học, phương trình vi phân, v.v.). Chứ nếu học một đống hàng ngàn bất đẳng thức mà không biết chúng dùng để làm gì, thì khá là phí thời gian. Phần lớn các bất đẳng thức (không kể các bất đẳng thức có tính tổ hợp) có thể được chứng minh khá dễ dàng bằng một phương pháp cơ bản, là phương pháp dùng đạo hàm hoặc sai phân. Phương pháp này học sinh phổ thông có thể học được, nhưng thay vào đó học sinh lại được học các kiểu mẹo mực để chứng minh bất đẳng thức. Các mẹo mực có ít công dụng, chỉ dùng được cho bài toán này nhưng không dùng được cho bài toán khác (bởi vậy mới là “mẹo mực” chứ không phải “phương pháp”). “Mẹo mực” có thể làm cho cuộc sống thêm phong phú, nhưng nếu mất quá nhiều thời gian vào “mẹo mực” thì không còn thời gian cho những cái cơ bản hơn, giúp tiến xa hơn. Như là trong công nghệ, có cải tiến cái đèn dầu đến mấy thì nó cũng không thể trở thành đèn điện.

Hồi còn nhỏ, có lần tôi đi thi học sinh giỏi (lớp 6 ?), có bài toán tìm cực đại. Tôi dùng đạo hàm tính ngay ra điểm cực đại, và có bạn khác cùng lớp cũng biết làm như vậy. Cách làm đó là do chúng tôi tự đọc sách mà ra chứ không được dạy. Nhưng khi viết lời giải thì lại phải giả vờ “đoán mò” điểm cực đại, rồi viết hàm số dưới dạng một số (giá trị tại điểm đó) cộng với một biểu thức hiển nhiên là không âm (ví dụ như vì có dạng bình phương) thì mới được điểm, chứ nếu viết đạo hàm thì mất hết điểm. Nếu như thầy giáo trừ điểm học sinh, vì học sinh giải bài thi bằng một phương pháp “cơ bản” nhưng “không có trong sách thầy”, thì điều đó sẽ góp phần làm cho học sinh học mẹo mực, thiếu cơ bản.

Qua phỏng vấn một số sinh viên đại học và cao học ngành toán của Việt Nam, tôi thấy họ được học nhiều môn “cao cấp”, nhưng vẫn thiếu kiến thức cơ bản. Ví dụ như họ học giải tích hàm, với những định lý trừu tượng khá là khó. Nhưng họ lại không biết công thức Parceval cho chuỗi Fourier là gì, trong khi chuỗi Fourier là một trong những khái niệm giải tích cơ bản và nhiều ứng dụng nhất của toán. Tôi không có ý nói giải tích hàm là “không cơ bản”. Nó là thứ cần thiết. Nhưng nếu những khái niệm và định lý của giải tích hàm chỉ được học một cách hình thức, không có liên hệ với chuỗi Fourier hay với các ví dụ cụ thể khác, thì đó là học “trên mây trên gió”.
(... còn nữa ...)
Theo Zung's Website

Thứ Sáu, 10 tháng 7, 2009

Đề thi, đáp án chính thức các khối A, B, D trong kì thi Đại học 2009

Đề và đáp án chính thức của Bộ - kỳ thi Đại học năm 2009:
- Khối A (Toán, Lý, Hoá), 3.6 MB: Download
- Khối B (Toán, Hoá, Sinh), 3.4 MB: Download
- khối D (Toán, Văn, Ngoại Ngữ gồm Anh, Pháp, Nga, Nhât , Trung, Đức): Download
Xem thêm:
-Đáp án đề thi Đại học môn Toán năm 2008: Download
-Đáp án đề thi Đại học môn Toán từ 2002-2007: Download

Thứ Năm, 9 tháng 7, 2009

Tiến sĩ Lê Thống Nhất giải sai 2 câu hình trong Đề thi Đại học 2009

Thật đáng tiếc vì đây là sai kiến thức cơ bản chứ không phải sai do tính toán với các con số (Lưu ý: 6 giáo viên giải 2 đề trong 3 tiếng rưỡi > 180 phút làm bài của 1 thí sinh).

cotang=kề/huyền?, tang = đối/huyền?

Đáng tiếc hơn nữa là lời giải này được đăng trên 2 tờ báo điện tử lớn nhất Việt Nam là VNExpress và Dân Trí (đăng vào tối ngày 09/07/2009, sáng nay 10/07 các báo đã đính chính sai sót bằng bản cập nhật).
Download bài giải sai 2 câu IV (về hình học không gian) của TS Lê Thống Nhất ở đây: KHỐI BKHỐI D

Gợi ý giải đề thi môn Toán khối B - kỳ thi Đại học 2009

Môn Toán, khối B, đề thi và gợi ý giải.
- Thanh Niên Online: DOWNLOAD
- Tuổi Trẻ Online: DOWNLOAD

Gợi ý giải đề thi môn Toán khối D - kỳ thi Đại học 2009

Gợi ý giải đề thi môn Toán - khối D:
- Từ Tuổi Trẻ Online: DOWNLOAD
- Từ Thanh Niên Online: DOWNLOAD

Thứ Ba, 7 tháng 7, 2009

Những sai sót nghiêm trọng trong đợt 1 - kỳ thi tuyển sinh Đại học 2009

1. Một giám thị (giáo viên tiểu học) “đính chính” sai đề Toán

Theo thông tin từ ĐH Công nghiệp TPHCM, giám thị hướng dẫn sai một câu hỏi “trị giá” 2 điểm trong đề thi môn Toán là một giáo viên của Trường Tiểu học Dân lập Nhựt Tân (quận Gò Vấp) được Hội đồng tuyển sinh thuê để coi thi.

Trong buổi sáng thi môn Toán khối A (4/7), ngay khi phát đề thi xong, các thí sinh phòng 190 và 191 của ĐH Công nghiệp TPHCM được giám thị lưu ý rằng, câu I của đề toán có sai sót. Sau đó giám thị đã “đính chính”: trong câu I hàm số mà đề đưa ra là có dấu trừ (-) ở đằng trước, rồi cho thí sinh tiếp tục làm bài.

Được biết, đây là câu dễ “ăn” điểm (2 điểm) nhất trong toàn bộ đề Toán, vì thế hầu hết các thí sinh trong phòng, sau khi được các giám thị “đính chính” đã làm bài theo đề sai.

Một thí sinh khẳng định: “Phải gần 50% số thí sinh của phòng làm theo hướng thêm dấu trừ (-) phía trước hàm số ở câu 1. Rất nhiều bạn bàn tán về nội dung này và tỏ ra rất buồn khi cán bộ coi thi đã giải thích sai…”

“Theo Quy chế tuyển sinh, trong phòng thi, nếu thí sinh có thắc mắc thì phải giơ tay hỏi giám thị. Giám thị tiếp nhận thắc mắc đó và thông báo ngay tới Hội đồng thi để xem xét giải đáp chứ không có quyền giải thích ngay tại phòng. Việc giải thích ngay tại phòng thi cho thí sinh là đã sai phạm Quy chế tuyển sinh” - ông Trần Hữu Minh, Trưởng phòng Tổ chức Hành chính trường ĐH Công nghiệp TPHCM cho hay.

Theo ông Minh, trong bản tường trình, giám thị này đã giải thích việc“thông báo” sửa đề là “do thương thí sinh”.

Hội đồng tuyển sinh của trường ĐH Công nghiệp TPHCM đã giải trình sự việc trên lên Bộ GD-ĐT để xem xét giải quyết.

Cùng ngày, bà Trần Thị Hà - Vụ trưởng Vụ Giáo dục ĐH cũng cho biết, Bộ sẽ cử thanh tra làm việc cụ thể với trường ĐH Công nghiệp TPHCM để có kết luận chính xác về sự cố này.


2. Thiếu hai dấu trừ trong đề thi môn Vật lý ở cụm thi Quy Nhơn


Sai sót thiếu hai dấu trừ trong đề thi môn Vật lý ở cụm thi Quy Nhơn (Bình Định) được Ban Chỉ đạo thi ĐH (Bộ GD-ĐT) khẳng định sẽ xử lý theo hướng đảm bảo lợi ích cho thí sinh. Sáng 6/7, sẽ diễn ra cuộc họp khẩn cấp của Ban Chỉ đạo sau khi có báo cáo chính thức của Trường ÐH Quy Nhơn.
Chiều 5/7, sau khi Bộ GD-ĐT công bố đề thi, đáp án kỳ thi tuyển sinh ĐH, VietNamNet nhận được phản ánh của một số thí sinh, phụ huynh về hiện tượng đề thi tuyển sinh môn Vật lý ở cụm thi Quy Nhơn (Bình Định) bị thiếu hai dấu trừ.

Cụ thể, câu 26 mã đề 135 như sau: "Nguyên tử hiđrô đang ở trạng thái cơ bản có mức năng lượng bằng –13,6 eV. Để chuyển lên trạng thái dừng có mức năng lượng –3,4 eV thì nguyên tử hiđrô phải hấp thụ một phôtôn có năng lượng...". Sau đó là các phương án: A, B, C, D.

Tuy nhiên, trong đề thi của các thí sinh ở Quy Nhơn thiếu mất dấu trừ ở các con số –3,4 eV và –13,6 eV.

Chị Trần Thị Tuyết Lan ở Tam Quan (Bình Định) cho rằng, trường hợp này, thí sinh không thể tự phát hiện được.

Trao đổi với VietNamNet, PGS. TS Nguyễn Hồng Anh, Hiệu trưởng Trường ĐH Quy Nhơn, Chủ tịch Hội đồng coi thi liên trường TP. Quy Nhơn cho hay, sau khi nhận được thông tin, Hội đồng thi đã kiểm tra lại và xác nhận có hiện tượng như trên.

Ông cho biết sơ suất này khả năng do khi in sao đề thi, máy in không nhận được dấu trừ.

Tối 5/7, Thứ trưởng Bộ GD-ĐT Phạm Vũ Luận cho hay, sơ xuất này do trong khâu kiểm tra đề thi trước khi sao in so với đề thi gốc chưa tốt.

Để xử lý vấn đề này, Ban chỉ đạo thi của Bộ đã yêu cầu Chủ tịch Hội đồng tuyển sinh Đại học Quy Nhơn kiểm tra toàn bộ khâu giải mã, in, sao đề thi và báo cáo bằng văn bản tới Ban chỉ đạo thi để có biện pháp xử lý phù hợp, đảm bảo lợi ích cho các thí sinh.

Chủ Nhật, 5 tháng 7, 2009

Đề thi, đáp án chính thức các môn khối A - kỳ thi Đại học 2009


Bộ GD-ĐT đã công bố đáp án chính thức các môn trong kỳ thi tuyển sinh ĐH-CĐ 2009, đợt 1. MATHVN.COM xin giới thiệu đến các bạn đề thi và đáp án của môn Toán.
Download ở đây: DOWNLOAD

Đề thi chính thức môn Toán (xem trực tiếp, máy bạn phải cài Adobe Flash):



Đáp án và thang điểm chính thức môn Toán của Bộ GD-ĐT:

Thứ Bảy, 4 tháng 7, 2009

Gợi ý giải đề thi môn Hoá và Lý khối A - kỳ thi Đại học 2009


Môn Hoá (thi sáng 05/7/2009):
- Đáp án từ Tuoi Tre Online: Download (PDF, 364KB)
Môn Lý (thi chiều 04/7/2009):
- Đáp án từ Tuoi Tre Online: Download
- Đáp án từ Thanh Nien Online: Download

Thứ Sáu, 3 tháng 7, 2009

Gợi ý giải đề thi môn Toán khối A - kỳ thi Đại học 2009


Đáp án (và đề thi) được Tuoi Tre Online cung cấp lúc 12h45 ngày 4/7/2009. Cuối đợt sẽ có đáp án và thang điểm chính thức của Bộ.

Xem trực tiếp ở đây:



Download ở đây: DOWNLOAD (có cả bài giải gợi ý từ Thanh Nien Online).

Giả thuyết Poincaré và câu chuyện ở mặt sau tấm huy chương Fields 2006

Dưới đây là bài viết của thầy Phạm Trà Ân (viện Toán) về bài toán Poincaré và tấm huy chương Fields 2006 gửi cho pedia.vnmath. Nó được chia làm 3 phần:

Phần 1: Tin các báo.
Phần 2: Bài toán Poincaré: Những chặng đường chinh phục các đỉnh cao .
Phần 3: Câu chuyện nằm ở mặt sau của tấm Huy chương vàng Fields-2006.
Giả thuyết Poincaré do Nhà Toán học người Pháp, Henri Poincaré (1854-1912), đề xuất bắt nguồn từ một nhận xét có tính trực quan trong dân gian : Trong các “hình cầu - 2 chiều” thông thường, mọi đường cong khép kín đều có thể co lại liên tục thành một điểm trên mặt phẳng.
Năm 1904 Poincare đặt vấn đề : liệu kết quả trên có còn đúng hay không đối vối một “Hình cầu - 3 chiều”?

Hình học-Tôpô, đôi khi còn được gọi một cách dân dã là
“Hình học của các màng cao su”, vì ngành này chuyên
nghiên cứu về sự bảo tồn của các bề mặt, khi các bề mặt bị kéo dãn ra hay bị chọc thủng. Đối với các nhà Tôpô học, chẳng có một sự khác biệt nào giữa một chiếc bánh vừng vòng với một tách cà phê, vì cả hai đều có một lỗ thủng trên bề mặt, nhưng lại có sự khác biệt “rất quan trọng” giữa một trái bóng tròn (không có lỗ thủng nào) với một chiếc săm ô tô đã được bơm căng (có một lỗ thủng).

H. Poincaré đã dự đoán
“Sẽ không có cách nào biến đổi một bề mặt không có lỗ thủng thành một bề mặt có một lỗ thủng mà không xé rách nó và bất kỳ bề mặt không có lỗ nào cũng có thể kéo căng thành bề mặt của một khối cầu ”
Ông đã tìm cách chứng minh phỏng đoán này, nhưng không chứng minh được. Sau này phỏng đoán của Poincaré được các nhà toán học gọi là “Giả thuyết Poincaré”, viết tắt là PC (Poincaré Conjecture).

Xem đầy đủ bài viết (trực tiếp) ở đây:




Download ở đây: DOWNLOAD

Theo pedia.vnmath.com

Có thể xem thêm bài viết về người không nhận huy chương Fields 2006 - Perelman ở đây. Xem thêm các bài viết về huy chương FIELDS ở đây.

Bài đăng phổ biến