Thứ Hai, 3 tháng 12, 2012

Bộ đề thi Học kỳ 1 môn Toán lớp 12 (tham khảo)

Cuối tháng 12, các học sinh 12 sẽ bước vào kì thi học kì 1. Bài viết này sẽ giới thiệu bộ đề thi học kỳ 1 môn Toán lớp 12 để thầy cô và HS tham khảo.
DE THI HOC KY 1 MON TOAN LOP 12
Độc giả tải bộ đề thi học kì 1 Toán 12 theo các link sau về để xem và in ra thử sức:
Xem thêm: Đề thi học kỳ 1 môn Toán lớp 11 (có ma trận đề)

Hình nền Giáng sinh đẹp cho máy tính (Noel 2012)

Giáng sinh 2012 đã cận kề, MATHVN sưu tầm bộ hình nền Giáng sinh đẹp cho máy tính (Noel 2012) để mọi người trang trí cho laptop của mình.
Bộ hình nền với một số ảnh chất lượng cao, kích thước lên đến 2560x1600, số còn lại kích thước nhỏ hơn nhưng cũng vừa cho màn hình desktop, laptop của bạn.
Hinh nen giang sinh dep cho may tinh 2012
Hình nền Giáng sinh 2012 đẹp cho máy tính
Dưới đây là một số hình trong bộ sưu tập Hình nền Noel 2012 đẹp cho máy tính. Để có bộ ảnh đầy đủ và chất lượng cao, hãy tải về file đính kèm với dung lượng 22.2MB (21.72 in Rar): Download
Hinh nen Noel 2012 dep cho may tinh
Hinh nen giang sinh dep cho may tinh 2012
Hinh nen giang sinh dep cho may tinh 2012
Hinh nen giang sinh dep cho may tinh 2012
Hinh nen giang sinh dep cho may tinh 2012
Hinh nen giang sinh dep cho may tinh 2012
Hinh nen giang sinh dep cho may tinh 2012
Hinh nen giang sinh dep cho may tinh 2012
Hinh nen Noel 2012 dep cho may tinh
Hinh nen Noel 2012 dep cho may tinh
Tải toàn bộ bộ sưu tập (22.2MB) ở đây: Download Christmas Wallpapers

Chủ Nhật, 2 tháng 12, 2012

Đáp án, đề thi thử Đại học môn Toán lần 1 năm 2013 - Thuận Thành I, Bắc Ninh

MATHVN xin giới thiệu đáp án và đề thi thử Đại học lần 1 năm 2013 môn TOÁN của trường Thuận Thành I, Bắc Ninh, dành cho thí sinh khối A, khối B.
de thi thu dai hoc 2013 co dap an, thuan thanh i bac ninh
Đề thi và đáp án được soạn thảo bởi thầy Lê Doãn Mạnh Hùng. Được gửi đến mathvn.com bởi thầy Nguyễn Hữu Thanh, GV Toán của trường.
Tải đề thi và đáp án (PDF rõ nét) để in ra: Download Thi Thu Dai Hoc Thuan Thanh I.

Xem thêm: Đề thi thử ĐH 2013 có đáp án môn Toán, Lý, Hóa, Sinh

Thứ Tư, 28 tháng 11, 2012

Tuyển tập các chuyên đề TÍCH PHÂN luyện thi đại học (đủ dạng)

Tích phân được ra ở câu 4 trong cấu trúc đề thi đại học môn Toán 2013. Bài viết này tổng hợp các chuyên đề TÍCH PHÂN luyện thi đại học (đủ dạng, đồ sộ). Gồm lý thuyết, bài tập, lời giải, đề thi, đáp án,... về chủ đề tích phân.
chuyen de tich phan luyen thi dai hoc
ĐỀ THI TÍCH PHÂN
Tuyển tập các bài toán TÍCH PHÂN trong đề thi Đại học (chính thức)
Tích phân từng phần trong đề thi tuyển sinh Đại học

PHƯƠNG PHÁP TÍNH TÍCH PHÂN
Phương pháp tính Tích phân từng phần (mẹo tính nhanh)
Vài mẹo nhỏ khi tính Tích phân bằng phương pháp tích phân từng phần
Các phương pháp tính tích phân điển hình
Các phương pháp tính Tích phân (đổi biến số, từng phần,...)
Một số kinh nghiệm về cách tính tích phân
Giải toán Tích phân bằng nhiều cách
7 hướng biến đổi cho 1 bài toán tích phân

SÁCH - BÀI GIẢNG TÍCH PHÂN
Nguyên hàm, tích phân và ứng dụng - Trần Sĩ Tùng
Bài giảng Tích phân của thầy Phạm Kim Chung - Nghệ An
Chuyên đề Tích phân hàm lượng giác - Nguyễn Thành Long
Tích phân hàm "nhị phân thức" - Nguyễn Thành Long
400 bài toán Tích phân hàm lượng giác có lời giải

Cấu trúc đề thi Đại học môn Toán năm 2013 (khối A, A1, B, D)

Mặc dù Cấu trúc đề thi Đại học môn Toán năm 2013 khối A, A1, B, D chưa được Bộ Giáo dục chính thức ban hành nhưng nếu không có gì thay đổi thì cấu trúc năm 2013 vẫn như 2012.
Cau truc de thi dai hoc mon toan nam 2013, khoi A A1 B D
Đề thi Đại học môn Toán khối A 2012
Cấu trúc đề thi ĐH môn Toán dưới đây dựa vào đề thi chính thức 2012 và cấu trúc chính thức của Bộ ban hành từ năm 2010:
I. PHẦN CHUNG (7 điểm)
Câu 1 (2 điểm):
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số.
b) Các bài toán liên quan đến ứng dụng của đạo hàm và đồ thị của hàm số: chiều biến thiên của hàm số; cực trị; giá trị lớn nhất và nhỏ nhất của hàm số; tiếp tuyến, tiệm cận (đứng và ngang) của đồ thị hàm số; tìm trên đồ thị những điểm có tính chất cho trước, tương giao giữa hai đồ thị (một trong hai đồ thị là đường thẳng)...
Câu 2 (1 điểm):
Công thức lượng giác, phương trình lượng giác.
Câu 3 (1 điểm):
Phương trình, bất phương trình; hệ phương trình đại số.
Câu 4 (1 điểm):
- Tìm giới hạn.
- Tìm nguyên hàm, tính tích phân.
- Ứng dụng của tích phân: tính diện tích hình phẳng, thể tích khối tròn xoay.
Câu 5 (1 điểm):
Hình học không gian (tổng hợp): quan hệ song song, quan hệ vuông góc của đường thẳng, mặt phẳng; diện tích xung quanh của hình nón tròn xoay, hình trụ tròn xoay; thể tích khối lăng trụ, khối chóp, khối nón tròn xoay, khối trụ tròn xoay; tính diện tích mặt cầu và thể tích khối cầu.
Câu 6 (1 điểm):
Bài toán tổng hợp.

II. PHẦN RIÊNG (3 điểm)
Thí sinh chỉ được làm một trong hai phần (phần a hoặc phần b).
Theo chương trình chuẩn:
Câu 7a (1 điểm):
Phương pháp tọa độ trong mặt phẳng:
- Xác định tọa độ của điểm, vectơ.
- Đường tròn, elip.
- Viết phương trình đường thẳng.
- Tính góc; tính khoảng cách từ điểm đến đường thẳng.
Câu 8a (1 điểm):
Phương pháp tọa độ trong không gian:
- Xác định tọa độ của điểm, vectơ.
- Đường tròn, Mặt cầu.
- Tính góc; tính khoảng cách từ điểm đến đường thẳng, mặt phẳng; khoảng cách giữa hai đường thẳng; vị trí tương đối của đường thẳng, mặt phẳng và mặt cầu.
Câu 9a (1 điểm):
- Số phức.
- Tổ hợp, xác suất, thống kê.
- Bất đẳng thức; cực trị của biểu thức đại số.
Theo chương trình nâng cao:
Câu 7b (1 điểm):
Phương pháp tọa độ trong mặt phẳng:
- Xác định tọa độ của điểm, vectơ.
- Đường tròn, ba đường conic.
- Viết phương trình đường thẳng.
- Tính góc; tính khoảng cách từ điểm đến đường thẳng.
Câu 8b (1 điểm):
Phương pháp tọa độ trong không gian:
- Xác định tọa độ của điểm, vectơ.
- Đường tròn, mặt cầu.
- Viết phương trình mặt phẳng, đường thẳng.
- Tính góc; tính khoảng cách từ điểm đến đường thẳng, mặt phẳng; khoảng cách giữa hai đường thẳng; vị trí tương đối của đường thẳng, mặt phẳng và mặt cầu.
Câu 9b (1 điểm):
- Số phức.
- Đồ thị hàm phân thức hữu tỉ dạng y = (ax2 + bx + c) / (px + q) và một số yếu tố liên quan.
- Sự tiếp xúc của hai đường cong.
- Hệ phương trình mũ và lôgarit.
- Tổ hợp, xác suất, thống kê.
- Bất đẳng thức. Cực trị của biểu thức đại số.

Chương trình trắc nghiệm nghề nghiệp 2012

Hướng nghiệp


Thắm thoát cũng đã 12 năm đèn sách rồi đó các em hen. Giờ đây đứng trước những ngã rẽ của tương lai, ta biết chọn hướng nào đây? Bản thân các em sẽ băn khoăn không biết hướng nào là tốt, hướng nào là thuận lợi? Các em đã từng ước mơ mình làm kỹ sư, bác sỹ, cử nhân, giáo viên, nhà nghiên cứu,...? Các em có biết rõ mình phù hợp với ngành nghề nào không? Báo Tuổi Trẻ có một số câu hỏi trắc nghiệm tính cách, sở thích, thói quen từ đó sẽ tư vấn cho ta biết ngành nghề phù hợp. Các em tải về chương trình này từ liên kết dưới đây và làm theo như trong flash hướng dẫn để tự trắc nghiệm nhé.

Tải về chương trình trắc nghiệm tại: mediafire.com

Hy vọng các em có thêm thông tin bổ ích để chọn được ngành nghề phù hợp nhất với bản thân.


Thứ Bảy, 24 tháng 11, 2012

Tự động ngắt trang môi trường Toán trong Latex

Khi soạn thảo tài liệu Toán bằng Latex, điều chắc chắn là bạn sẽ dùng các môi trường như align, flalign, eqnarray, array, ... để trình bày, căn chỉnh các dòng biến đổi Toán học một cách đẹp mắt và chuyên nghiệp hơn. Tuy nhiên, do Latex tự động tối ưu cách sắp xếp, phân bổ nội dung trên tổng số trang nên ta sẽ gặp phải một trong những tình huống ngoài ý muốn kiểu như: nội dung soạn thảo chưa đầy 2 trang, nhưng trong đó có một khối các bước biến đổi Toán học tương đối dài không trình bày hết ở trang thứ nhất, (và ta dùng môt trường align để căn chỉnh cho khối các bước biến đổi này), khi đó latex sẽ đẩy cả khối này sang trang thứ hai và để lại trên trang thứ nhất nhiều khoảng trống.

không tự động ngắt trang

Những lúc như thế, ta chỉ ước gì latex hiểu và tự động ngắt trang khi đã trình bày "kín" ở trang 1 rồi mới sang trang 2. Điều ước đó sẽ thành hiện thực khi ta đặt lệnh \allowdisplaybreaks trước \begin{document} trong file tex của bạn.
\allowdisplaybreaks 
\begin{document}
Và đây là kết quả.

Tự động ngắt trang đối với môi trường Toán

Một lệnh đơn giản trong latex nhưng sẽ góp phần cho ta tạo ra các tài liệu với cách trình bày đẹp và chuyên nghiệp.

Bài đăng phổ biến